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              (N = # colors, nf = # flavors) 
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Review of Lattice Results: N=3, nf = 0, 2, 2+1, 3
nf = 0:   T_deconf ≈ 270 MeV

pressure small for T < T_d
like N→∞: p ~ 1 for T<T_d, p ~ N^2 for T>T_d   (Thorn, 81)

nf ≠ 0: as nf ↑, p_ideal ↑, T_chiral ↓
      BIG change: between nf = 0 and nf = 3, 
                p_ideal: 16 to 48.5 x ideal m=0 boson      Tc:   270 to 175 MeV!
Even the order changes: first for nf=0 to “crossover” for nf = 2+1

Bielefeld
pressure/T^4 ↑

T=>
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Three colors, pure gauge: weakly first order
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Latent heat:                 ~ 1/3 vs 4/3 in bag model.  So?  
Look at gauge-inv. correlation functions: (2-pt fnc. Polyakov loop)

∆ε/εideal

〈!∗(x)!(0)〉 − |〈!〉|2 ∼ e−mx/x , x → ∞ T < T_d : m = σ/T
T > T_d: m = m_Debye

.9 T_d ↑ ↑ T_dT_d ↑ ↑ 4 T_d

T-dep.
string
tension ↑

↑Debye
  mass



Deconfining Transition vs N: First order ∀ N ≥ 4
Lucini, Teper, Wenger ‘03: latent heat ~ N^2 for N= 3, 4, 6, 8

No data for 

Gross-Witten -  First order but:σ(T−
d ) = mDebye(T+

d ) = 0

σ(T−
d ) , mDebye(T+

d )

N=>

latent heat/N^2

Is N →∞ Gross-Witten?

x

x
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N=2: second order
   => no latent heat

N=3: “weakly” 1st

N ≥ 4: strongly 
   first order.
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Flavor Independence
p

pideal

(
T

Tc

)
≈ universal

Bielefeld

Perhaps: even for nf ≠ 0, “transition” dominated by gluons

At T ≠ 0: thermodynamics dominated by Polyakov loops



Wilson Lines at T ≠ 0
Always: “pure” SU(N) gauge, no dynamical quarks (nf = 0)

Imaginary time formalism: τ : 0 → 1/T

LN (!x, τ) = P exp
(

ig

∫ τ

0
Aa

0(!x, τ ′)taNdτ ′
) Wilson line in fundamental representation: 

= propagator for “test quark”at x, moving up in (imaginary) time

D0GN = δ(τ) => GN = LNθ(τ)

LN = L†
N = propagator “test anti-quark” at x, moving back in time 

LN ε SU(N) : L†
NLN = 1N , det(LN ) = 1 (Mandelstam’s constraint)



Polyakov Loops
Wrap all the way around in τ: LN (!x, 1/T ) → LN

Polyakov loop = normalized loop = gauge invariant

!N =
1
N

tr LN

Confinement: test quarks don’t propagate

〈!N 〉 = 0 , T < Tdeconf

Deconfinement: test quarks propagate

〈!N 〉 = eiθ|〈!N 〉| #= 0 , T > Td

eiNθ = 1 : Spontaneous breaking of global Z(N) = center SU(N)

‘t Hooft ‘79, Svetitsky and Yaffe, ‘82



Adjoint Representation

tr Ladj = |tr LN |2 − 1

Adjoint rep. = “test meson”

Note: both coefficients ~ 1

Check: LN = 1N → tr Ladj = N2 − 1 = dimension of the rep.

Adjoint loop: divide by dim. of rep.

!adj =
1

N2 − 1
tr Ladj

At large N,

!adj = |!N |2 + O

(
1

N2

)
= factorization



Two-index representations
2-index rep.’s = “di-test quarks” = symmetric or anti-sym.

trL(N2±N)/2 =
1
2

(
(trLN )2 ± trL2

N

)
Di-quarks: two qks wrap once in time, or one qk wraps twice

Again: both coeff ’s ~ 1.  Subscript = dimension of rep.’s = (N^2 ± N)/2

For arbitrary rep. R, if d_R = dimension of R, 

!R ≡ 1
dR

tr LR

For 2-index rep.’s ±, as N →∞, 

!± ∼ !2N + O

(
1
N

)
corr.’s 1/N, not 1/N^2: ∼ 1

N2
trL2

N



Loops at Infinite N
“Conjugate” rep.’s of Gross & Taylor ‘93: LN and LN = L†

N

If all test qks and test anti-qks wrap once and only once in time,

tr LR = #(tr LN )p+(tr L†
N )p− + . . .

Many other terms:

#′ tr L2
N (tr LN )p+−2(tr L†

N )p− + . . .

dimension R = dR ∼ Np++p−

As N → ∞, if #, #’... are all of order 1, first term dominates, and:

!R ∼ (!N )p+ (!N )p− + O

(
1
N

)

Normalization: if !N = !N = 1 , !R = 1 ∀ R



Factorization at Infinite N

Makeenko & Migdal ‘80: at N=∞, expectation values factorize:

〈!N 〉 = eiθ|〈!N 〉| #= 0 , T > Td , eiNθ = 1

In the deconfined phase, the fundamental loop condenses:

〈!R〉 = 〈!N 〉p+〈!N 〉p− + O
(
N−1

)
= eieRθ|〈!N 〉|p++p− + O(N−1)

Phase trivial: = Z(N) charge of R, defined modulo NeR = p+ − p−

Magnitude not trivial: highest powers of              win.|〈!N 〉|
At infinite N, any loop order parameter for deconfinement:
even if e_R = 0!  E.g.: adjoint loop (Damgaard, ‘87 ) vs adjoint screening.

N.B.: 〈!test baryon〉 = 〈!N 〉N−1〈tr L2
N/N〉



“Mass” renormalization for loops
Loop = propagator for infinitely massive test quark.

Still has mass renormalization, proportional to length of loop:

〈!R〉 = exp (−mR/T ) , mR ≡ fdiv
R /a

To 1-loop order in 3+1 dimensions:

a = lattice spacing.  m_R = 0 with dimensional regularization, but so what?

〈!R〉 − 1 ∼ −
(

1
T

)
CRg2

∫ 1/a d3k

k2
∼ −CRg2

aT

Divergences order by order in g^2.  Only power law divergence for
straight loops in 3+1 dim.’s. ; corrections ~aT.

In 3+1 dim.’s, loops with cusps do have logarithmic divergence.
(Dokshitzer: ~ classical bremstrahlung)

In 2+1 dim.’s, straight loops also have log. div.’s. (cusps do not)



Renormalization of Wilson Lines
Gervais and Neveu ‘80; Polyakov ‘80; Dotsenko & Vergeles ‘80 ....

For irreducible representations R, renormalized Wilson line:

= renormalization constant for Wilson line

For straight lines in 3+1 dimensions, only:
No anomalous dim. for Wilson line: no condition to fix        at some scale

As R’s irreducible, different rep’s don’t mix under renormalization

For all local, composite operators, Z’s independent of  T

ZR

ZR

Wilson line = non-local composite operator: 

temperature dependent: from 1/T, and ZR mR (found numerically)

L̃R = LR/ZR , ZR ≡ exp(−mR/T )

Not really different: a m_R = func. renormalized g^2, and so T-dependent.



Renormalization of Polyakov Loops

Renormalized loop: !̃R = !R/ZR

Constraint for bare loop: |!R| ≤ 1

For renormalized loop: |!̃R| ≤ Z−1
R

as a → 0, no constraint on ren.’d loopIf mR > 0 ∀ T, ZR → 0

E.g.: as T →∞, ren’d loops approach 1 from above: (Gava & Jengo ‘81)

〈!̃R〉 − 1 ∼ −
(

1
T

)
CRg2

∫
d3k

k2 + m2
Debye

∼ (−)CRg2(−)(m2
Debye)

1/2

〈!̃R〉 ≈ exp
(

+
CR

N

(g2N)3/2

8π
√

3

)
Smooth large N limit: CR ≈ N

2
(p+ + p−) + O(1)

=> negative “free energy”
for loop



Why all representations?
Previously: concentrated on loops in fund. and adj. rep.’s, esp. with cusps.
At T ≠ 0, natural for loops, at a given point in space, to wrap around in
τ many times.  Most general gauge invariant term:

G = (tr Lq+
1

R+
1
)n+

1 (tr Lq+
2

R+
2
)n+

2 . . . (tr (L†
R−1

)q−1 )n−1 . . .

G = ΣR cR !R

By group theory (the character expansion):

Only this expression, which is linear in the bare loops, can be consistently ren.’d

Note: If all Z_R => 0 as a=> 0, 

Irrelevant: physics is in the ren.’d, not the bare, loops.  Discovered num.’y:

G = c1 , a = 0.

〈|!3|2〉 =
8
9
Z8〈!̃8〉 +

1
9
→ 1

9
+ . . . a → 0.



Lattice Regularization of Polyakov Loops
Basic idea: compare two lattices.  Same temperature, different lattice spacing

If a << 1/T, ren’d quantities the same.  

N_t = # time steps = 1/(aT) changes between the two lattices: get Z_R

N_s = # spatial steps; keep N_t/N_s fixed to minimize finite volume effects

log (|〈!R〉|) = −fdiv
R Nt + f cont

R + f lat
R

1
Nt

+ . . .

fdiv
R

f cont
R

fdiv
R → ZR f cont

R → 〈!̃R〉 Numerically, 

Each f_R is computed at fixed T.  As such, there is nothing to adjust.

Explicit exp. of divergences to ~g^4 at a≠0:   Curci, Menotti, & Paffuti, ‘85

f lat
R ≈ 0

N.B.: also finite volume corrections from “zero” modes; to be computed.



Representations, N=3

Label rep.’s by their dimension:

fundamental = 

adjoint = 8

symmetric 2-index = 6

special to N=3: anti-symmetric 2-index =  

3

3

“test baryon” = 10:
!10 =

1
10

(
tr L3 tr L2

3 + 1
)

Measured 3, 6, 8, & 10 on lattice



Lattice Results
Standard Wilson action, three colors, quenched.

Nt = 4, 6, 8,&10. Ns = 3Nt

Lattice coupling constant β = 6/g2

βd = coupling for deconfining transition: = βd(NT )!

Non-perturbative renormalization:

log(T/Td) = 1.7139(β − βd) + . . .

To get the same T/T_d @ different N_t, must compute at different β!

Calculate grid in β, interpolate to get the same T/T_d at different N_t

N.B. : Method same with dynamical quarks

Measured !3, !6, !8, & !10 (No signal for 10 for N_t > 4)



Bare triplet loop vs T, at different Nt

Note scale=>
~ .3

Tc

Nt=4

Nt=6

Nt=8

Nt=10

Nt = # time
         steps.

Bare loop 
vanishes as
Nt →∞

T/Tc=>

Triplet loop↑



Bare sextet loop vs T, at different Nt

Note scale=>
~ .04

Sextet loop↑

Tc T/Tc=>

Nt=4

Nt=6

Nt=8
Nt=10

Nt = # time
         steps.

Bare loop 
vanishes 
more quickly 
as Nt →∞



Bare octet  loop vs T, at different Nt

Octet loop↑

Tc T/Tc=>

Nt=4

Nt=6

Nt=8
Nt=10

Note scale=>
~ .06

Very 
similar to
sextet loop



Bare decuplet loop vs T, at different Nt

Note scale=>
~ .006

Decuplet loop↑

Tc T/Tc=>

Nt=4

Nt=6

Nt=8
Nt=10

No stat.’y
significant
signal for 
decuplet loop
above Nt=4.



Bare |!3| vs Nt

|〈!3〉| ≡ exp(−m3/T )|〈!̃3〉|



Divergent mass mR(T )

−4
3

= C3

−3 = C8

−10/3 = C6

a m_R ↑

a m_R looks like usual “mass”: smooth function of ren.’d g^2 =>smooth func.
of T: except near T_d!  One loop: m_R ~ C_R; OK for T ~ 3 T_d.  Fails
for T < 1.5 T_d

T/T_d =>T_d ↑

Casimir scaling 
for:  a m_R ↓

amR > 0 ∀ T



Renormalized Polyakov Loops

No signal of decuplet loop at N_t > 4; C_10 big, so bare loop small

!̃3 > !̃8 > !̃6

Ren’d loop ↑

T/T_d =>T_d ↑

Find: ren.’d
triplet loop, but
also significant
octet and sextet
loops, as well.



Results for Ren’d Polyakov Loops

But Z(3) charge e8 = 0 ⇒ 〈!̃8〉 $= 0 for T < Td.

Like large N: Greensite & Halpern ‘81, Damgaard ‘87...

(Similar to measuring adjoint string tension in confined phase)

T < Td : Z(3) symmetry ⇒ 〈!̃3〉 = 〈!̃6〉 = 0

Transition first order →ren.’d loops jump at T_d:

|〈!̃3〉| ≈ .4 ± .05 , T = T+
d

T > T_d:  Find ordering: 3 > 8 > 6.  But compute difference loops:

δ"̃6 ≡ 〈"̃6〉 − 〈"̃3〉2 ∼ O(1/N)

δ"̃8 ≡ 〈"̃8〉 − |〈"̃3〉|2 ∼ O(1/N2)

Numerically : 〈!̃8〉 = small #
1

N2
≈ 0 , T < Td



Difference Loops: Test of Factorization at N=3

Details of spikes 
near T_d?

Sharp octet spike

Broad sextet spike

Max. sextet diff. loop =>

Max. octet diff. loop =>

T_d  ↑

<= 8

<= 6

|δ"̃8| ∼ O(1/N2) ≤ .2 ; |δ"̃6| ∼ O(1/N) ≤ .25



Bare Loops don’t exhibit Factorization

Bare octet 
difference 
loop/bare 
octet loop: 
violations 
of factor.
50% @ 
Nt =4
200% @ 
Nt = 10.



Bielefeld’s Renormalized Polyakov Loop
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Bielefeld’s Ren’d Polyakov Loop, N=2
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Mean Field Theory for Fundamental Loop
At large N, if fundamental loop condenses, factorization ⇒ all other loops

This is a mean field type relation; implies mean field for 〈!̃N 〉?
General effective lagrangian for renormalized loops:

Choose basic variables as Wilson lines, not Polykov loops:

Z =
∫

Π dLN (i) exp (−S(!R(i))) LN (i) ε SU(N)

Loops automatically have correct Z(N) charge, and satisfy factorization.

(i = lattice sites)

Effective action Z(N) symmetric.  Potential terms (starts with adjoint loop):

W = ΣiΣeR=0
R γR"R(i)

and next to nearest neighbor couplings:

SR = −(N2/3)Σi,n̂ΣeR+eR′=0
R,R′ βR,R′ Re "R(i)"R′(i + n̂) .

In mean field approximation, that’s it.  (By using character exp.)



Matrix Model (=Mean Field) for N=3
Simplest possible model: only β3,3∗ ≡ β3 "= 0 (Damgaard, ‘87)

Fit β3(T ) to get  〈!̃3〉(T )

Find β3(T ) linear in T !
3

Now compute loops in other representations using this β3(T )

〈!3〉 =
∫

dL !3 exp (18β3〈!3〉Re!3)
/∫

dL exp (18β3〈!3〉Re!3)



N=3: Lattice Results vs Simple Mean Field

Approximate agreement for 6 & 8.  Predicts signal for 10!

<=10 ?

Solid lines = 
matrix model.  

Points = 
lattice data for 
renormalized loops.

3=>

8=>

<= 6



Difference Loops for Matrix Model, N=3

!

Diff. loops: matrix model much broader & smaller than 
lattice data!  => new physics in lattice.

<= Octet diff. loop

Sextet diff. loop =>

T_d ↑ 4 T_d ↑

Max. ~ - .03 matrix model  =>
      vs -0.20 lattice

Curves =
difference loops
computed in
matrix model

Large N =>
octet diff. loop <
sextet diff. loop

Max. ~ - .07 matrix model  =>
      vs -0.25 lattice



Matrix Model, N=∞, and Gross-Witten
Consider mean field, where  the only coupling is 

Gross & Witten ‘80, Kogut, Snow, & Stone ‘82, Green & Karsch ‘84

βN,N∗ ≡ β

At N=∞, mean field potential is non-analytic, given by two different potentials:

V−
mf = β(1 − β)"2 , " ≤ 1/(2β)

V+
mf = −2β" + β"2 +

1
2

log(2β") +
3
4

, " ≥ 1/(2β)

For fixed β, the potential is everywhere continuous, but its third 
derivative is not, at the point ! = 1/(2β)

β ≤ 1 : 〈"〉 = 0 = confined phase

β ≥ 1 : 〈"〉 $= 0 = deconfined phase

〈!〉 =
1
2

(
1 +

√
β − 1

β

)
:

〈!〉 =
1
2

, β = 1+

〈!〉 → 1 , β → ∞



Gross-Witten Transition: “Critical” First Order
Transition first order.  Order parameter jumps: 0 to 1/2.  Also, latent heat ≠ 0:

V−
mf = 0 , β ≤ 1 , V+

mf ≈ −(β − 1)/4 , β → 1+

But masses vanish, asymmetrically,  at the transition!

m2
− ≈ 2(1 − β) , β → 1− . m2

+ ≈ 4
√

β − 1 , β → 1+ .

If β~T, and the deconfining transition is Gross-Witten at N=∞, then
the string tension and the Debye mass vanish at T_d as:

σ(T ) ∼ (Td − T )1/2 , T → T−
d

mDebye(T ) ∼ (T − Td)1/4 , T → T+
d

But what about higher terms in the “potential”?  



String related analysis @ large N
hep-th/0310285: Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk
hep-th/0310286: Furuuchi, Schridber, & Semenoff

By integrating over vev, one can show model with mean field same as
model with just adjoint loop in potential.

=> Most general potential @ large N:

Gross-Witten simplest model: c2 ≠ 0, c4=c6=...=0.

AMMPR: consider c4 ≠ 0.  Work in small volume, => compute at small g^2.

AMMPR: either: 2nd order, or 1st order,                            

Lattice for N=3: close to infinite N, with small c4, c6....?
=> close to Gross-Witten?

W = c2|!|2 + c4(|!|2)2 + c6(|!|2)3 + . . .

〈!〉 =
1
2

, T = Td!



To do

Two colors: matching critical region near T_d to mean field region about T_d?

Higher rep.’s, factorization at N=2?

Three colors: better measurements, esp. near T_d: 〈!̃3〉(T+
d ) . . .

For decuplet loop, use “improved” Wilson line? 

Limp =
∫

dΩ!n exp( ig

∫
(A0 + κa "E · "n)dτ)

∫
dΩ!n ∼ HTL’s

“Spikes” in sextet and octet loops? Fit to matrix model?

Four colors: is transition Gross-Witten?  Or is N=3 an accident?

With dynamical quarks:  method to determine ren.’d loop(s) identical 

Is 〈!̃R〉
(

T

Tc

)
with quarks

≈ 〈!̃R〉
(

T

Td

)
pure gauge

?
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Fig. 6. The renormalized Polyakov loop in full QCD compared to the quenched results1) .

will do so by renormalizing the free energies at short distances. Assuming that no
additional divergences arise from thermal effects and that at short distances the
heavy quark free energies will not be sensitive to medium effects, renormalization is
achieved through a matching of free energies to the zero temperature heavy quark
potential. Using the large distance behavior of the renormalized free energies we
can then define the renormalized Polyakov loop which is well behaved also in the
continuum limit.

Using the renormalized free energies from fig. 3, i.e. the asymptotic values in
fig. 5, we can define the renormalized Polyakov loop1) ,

Lren = exp

(
−F1(r = ∞, T )

2T

)
. (4.1)

In fig. 6 we show the results for Lren in full QCD compared to the quenched
results obtained from Ref. 1). In quenched QCD it is zero below Tc by construction,
as the free energy goes to infinity in the limit of infinite distance. From the results of
different values of Nτ , it is apparent that Lren does not depend on Nτ and therefore
is well behaved in the continuum limit.

The renormalized Polyakov loop in full QCD is no longer zero below Tc. Due to
string breaking the free energies reach a constant value at large separations leading
to a non-zero value of Lren. The renormalized Polyakov loop is no longer an order
parameter for finite quarks mass, but still indicates a clear signal for a phase change
at Tc. It is small below Tc and shows a strong increase close to the critical tem-
perature. In the temperature range we have analyzed, Lren is smaller in full QCD

Bielefeld: Ren’d loop with quarks.  ≈ Same!

Kaczmarek et al: hep-lat/0312015

Tc

c/o quarks

c quarks
Ren’d
triplet 
loop ↑

T/Tc=>
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will do so by renormalizing the free energies at short distances. Assuming that no
additional divergences arise from thermal effects and that at short distances the
heavy quark free energies will not be sensitive to medium effects, renormalization is
achieved through a matching of free energies to the zero temperature heavy quark
potential. Using the large distance behavior of the renormalized free energies we
can then define the renormalized Polyakov loop which is well behaved also in the
continuum limit.

Using the renormalized free energies from fig. 3, i.e. the asymptotic values in
fig. 5, we can define the renormalized Polyakov loop1) ,

Lren = exp

(
−F1(r = ∞, T )

2T

)
. (4.1)

In fig. 6 we show the results for Lren in full QCD compared to the quenched
results obtained from Ref. 1). In quenched QCD it is zero below Tc by construction,
as the free energy goes to infinity in the limit of infinite distance. From the results of
different values of Nτ , it is apparent that Lren does not depend on Nτ and therefore
is well behaved in the continuum limit.

The renormalized Polyakov loop in full QCD is no longer zero below Tc. Due
to string breaking the free energies reach a constant value at large separations lead-
ing to a non-zero value of Lren. The renormalized Polyakov loop is no longer an
order parameter for finite quarks mass, but still indicates a clear signal for a phase
change at Tc. It is small below Tc and shows a strong increase close to the critical
temperature. In the temperature range we have analyzed, Lren is larger in full QCD


